Add like
Add dislike
Add to saved papers

Mitochondrial ATP-Mg/phosphate carriers transport divalent inorganic cations in complex with ATP.

The ATP-Mg/phosphate carriers (APCs) modulate the intramitochondrial adenine nucleotide pool size. In this study the concentration-dependent effects of Mg2+ and other divalent cations (Me2+ ) on the transport of [3 H]ATP in liposomes reconstituted with purified human and Arabidopsis APCs (hAPCs and AtAPCs, respectively, including some lacking their N-terminal domains) have been investigated. The transport of Me2+ mediated by these proteins was also measured. In the presence of a low external concentration of [3 H]ATP (12 μM) and increasing concentrations of Me2+ , Mg2+ stimulated the activity (measured as initial transport rate of [3 H]ATP) of hAPCs and decreased that of AtAPCs; Fe2+ and Zn2+ stimulated markedly hAPCs and moderately AtAPCs; Ca2+ and Mn2+ markedly AtAPCs and moderately hAPCs; and Cu2+ decreased the activity of both hAPCs and AtAPCs. All the Me2+ -dependent effects correlated well with the amount of ATP-Me complex present. The transport of [14 C]AMP, which has a much lower ability of complexation than ATP, was not affected by the presence of the Me2+ tested, except Cu2+ . Furthermore, the transport of [3 H]ATP catalyzed by the ATP/ADP carrier, which is known to transport only free ATP and ADP, was inhibited by all the Me2+ tested in an inverse relationship with the formation of the ATP-Me complex. Finally, direct measurements of Mg2+ , Mn2+ , Fe2+ , Zn2+ and Cu2+ showed that they are cotransported with ATP by both hAPCs and AtAPCs. It is likely that in vivo APCs transport free ATP and ATP-Mg complex to different degrees, and probably trace amounts of other Me2+ in complex with ATP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app