Add like
Add dislike
Add to saved papers

Argatroban Attenuates Diabetic Cardiomyopathy in Rats by Reducing Fibrosis, Inflammation, Apoptosis, and Protease-Activated Receptor Expression.

PURPOSE: Chronic diabetes is associated with cardiovascular dysfunctions. Diabetic cardiomyopathy (DCM) is one of the serious cardiovascular complications associated with diabetes. Despite significant efforts in understanding the pathophysiology of DCM, management of DCM is not adequate due to its complex pathophysiology. Recently, involvement of protease-activated receptors (PARs) has been postulated in cardiovascular diseases. These receptors are activated by thrombin, trypsin, or other serine proteases. Expression of PAR has been shown to be increased in cardiac diseases such as myocardial infarction, viral myocarditis, and pulmonary arterial hypertension. However, the role of PAR in DCM has not been elucidated yet. Therefore, in the present study, we have investigated the role of PAR in the condition of DCM using a pharmacological approach. We used argatroban, a direct thrombin inhibitor for targeting PAR.

METHODS: Type-2 diabetes mellitus (T2DM) was induced by high-fat feeding along with low dose streptozotocin (STZ 35 mg/kg, i.p. single dose) in male Sprague-Dawley rats. After 16 weeks of diabetes induction, animals were treated with argatroban at 0.3 and 1 mg/kg dose daily for 4 weeks. After 20 weeks, ventricular functions were measured using ventricular catheterization. Cardiac histology, TUNEL staining, and immunoblotting were performed to evaluate cardiac fibrosis, DNA fragmentation, and expression level of different proteins, respectively.

RESULTS: T2DM was associated with cardiac structural and functional disturbances as evidenced from impaired cardiac functional parameters and increased fibrosis. There was a significant increase in PAR expression after 20 weeks of diabetes induction. Four weeks argatroban treatment ameliorated metabolic alterations (reduced plasma glucose and cholesterol), ventricular dysfunctions (improved systolic and diastolic functions), cardiac fibrosis (reduced percentage area of collagen in picro-sirius red staining), and apoptosis (reduced TUNEL positive nuclei). Reduced expression of PAR1 and PAR4 in the argatroban-treated group indicates a response towards inhibition of thrombin. In addition, AKT (Ser-473), GSK-3β (Ser-9), p-65 NFĸB phosphorylation, TGF-β, COX-2, and caspase-3 expression were reduced significantly along with an increase in SERCA expression in argatroban-treated diabetic rats which indicated the anti-fibrotic, anti-inflammatory, and anti-apoptotic potential of argatroban in DCM.

CONCLUSION: This study suggests the ameliorative effects of argatroban in diabetic cardiomyopathy by improving ventricular functions and reducing fibrosis, inflammation, apoptosis, and PAR expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app