Add like
Add dislike
Add to saved papers

Increasing evidence indicates low bioaccumulation of carbon nanotubes.

As the production of carbon nanotubes (CNTs) expands, so might the potential for release into the environment. The possibility of bioaccumulation and toxicological effects has prompted research on their fate and potential ecological effects. For many organic chemicals, bioaccumulation properties are associated with lipid-water partitioning properties. However, predictions based on phase partitioning provide a poor fit for nanomaterials. In the absence of data on the bioaccumulation and other properties of CNTs, the Office of Pollution Prevention and Toxics (OPPT) within the US Environmental Protection Agency (EPA) subjects new pre-manufacture submissions for all nanomaterials to a higher-level review. We review the literature on CNT bioaccumulation by plants, invertebrates and non-mammalian vertebrates, summarizing 40 studies to improve the assessment of the potential for bioaccumulation. Because the properties and environmental fate of CNTs may be affected by type (single versus multiwall), functionalization, and dosing technique, the bioaccumulation studies were reviewed with respect to these factors. Absorption into tissues and elimination behaviors across species were also investigated. All of the invertebrate and non-mammalian vertebrate studies showed little to no absorption of the material from the gut tract to other tissues. These findings combined with the lack of biomagnification in the CNT trophic transfer studies conducted to date suggest that the overall risk of trophic transfer is low. Based on the available data, in particular the low levels of absorption of CNTs across epithelial surfaces, CNTs generally appear to form a class that should be designated as a low concern for bioaccumulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app