Add like
Add dislike
Add to saved papers

Sugar-based micro/mesoporous hypercross-linked polymers with in situ embedded silver nanoparticles for catalytic reduction.

Porous hypercross-linked polymers based on perbenzylated monosugars (SugPOP-1-3) have been synthesized by Friedel-Crafts reaction using formaldehyde dimethyl acetal as an external cross-linker. Three perbenzylated monosugars with similar chemical structure were used as monomers in order to tune the porosity. These obtained polymers exhibit microporous and mesoporous features. The highest Brunauer-Emmett-Teller specific surface area for the resulting polymers was found to be 1220 m(2) g(-1), and the related carbon dioxide storage capacity was found to be 14.4 wt % at 1.0 bar and 273 K. As the prepared porous polymer SugPOP-1 is based on hemiacetal glucose, Ag nanoparticles (AgNPs) can be successfully incorporated into the polymer by an in situ chemical reduction of freshly prepared Tollens' reagent. The obtained AgNPs/SugPOP-1 composite demonstrates good catalytic activity in the reduction of 4-nitrophenol (4-NP) with an activity factor ka = 51.4 s(-1) g(-1), which is higher than some reported AgNP-containing composite materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app