Add like
Add dislike
Add to saved papers

Electro-pharmacological profiles of two brain mitoplast anion channels: Inferences from single channel recording.

We have characterized the conduction and blocking properties of two different chloride channels from brain mitochondrial inner membranes after incorporation into planar lipid bilayers. Our experiments revealed the existence of channels with a mean conductance of 158 ± 7 and 301 ± 8 pS in asymmetrical 200 mM cis/50 mM trans KCl solutions. We determined that the channels were ten times more permeable for Cl(-) than for K(+), calculated from the reversal potential using the Goldman-Hodgkin-Katz equation. The channels were bell-shaped voltage dependent, with maximum open probability 0.9 at ± 20 mV. Two mitochondrial chloride channels were blocked after the addition of 10 µM DIDS. In addition, 158 pS chloride channel was blocked by 300 nM NPPB, acidic pH and 2.5 mM ATP, whereas the 301 pS chloride channel was blocked by 600 µM NPPB but not by acidic pH or ATP. Gating and conducting behaviors of these channels were unaffected by Ca(2+). These results demonstrate that the 158 pS anion channel present in brain mitochondrial inner membrane, is probably identical to IMAC and 301 pS Cl channel displays different properties than those classically described for mitochondrial anion channels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app