Add like
Add dislike
Add to saved papers

Differential effect of platelet-rich plasma fractions on β1-integrin signaling, collagen biosynthesis, and prolidase activity in human skin fibroblasts.

The study was conducted to evaluate the effects of platelet-rich plasma (PRP), supernatant of PRP (SPRP) obtained by centrifugation, and supernatant of activated PRP (SActi-PRP) obtained by Ca2+ solution-treated PRP on collagen biosynthesis, prolidase activity, and β1-integrin signaling in cultured human skin fibroblasts. Incubation of fibroblasts with 5% PRP for 24 h contributed to ~5-fold increase in collagen biosynthesis compared to the control. In the cells treated with 5% of SPRP or SActi-PRP, collagen biosynthesis showed a 3-fold increase of the control. PRP, SPRP, and SActi-PRP stimulated prolidase activity similar to collagen biosynthesis. Collagen biosynthesis and prolidase activity are regulated by β1-integrin receptor signaling. Incubation of fibroblasts with PRP for 24 h contributed to a dose-dependent increase in the expression of β1-integrin receptor, while SActi-PRP increased the process to a much lower extent. SPRP had no effect on the β1-integrin receptor expression. All the studied fractions of blood increased the expression of FAK as well as the expression of phosphorylated MAP-kinases. However, PRP was found to be the most effective stimulator of expression of these particular kinases. These studies suggest that a complex of factors, including growth factors, adhesion molecules, and prolidase contained in PRP, all evoke growth and collagen-promoting activities in human dermal fibroblasts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app