Add like
Add dislike
Add to saved papers

Map3k8 controls granulocyte colony-stimulating factor production and neutrophil precursor proliferation in lipopolysaccharide-induced emergency granulopoiesis.

Scientific Reports 2017 July 11
Map3k8 has been proposed as a useful target for the treatment of inflammatory diseases. We show here that during lipopolysaccharide-induced emergency granulopoiesis, Map3k8 deficiency strongly impairs the increase in circulating mature (Ly6G(high)CD11b(+)) and immature (Ly6G(low)CD11b(+)) neutrophils. After chimaeric bone marrow (BM) transplantation into recipient Map3k8(-/-) mice, lipopolysaccharide treatment did not increase circulating Ly6G(high)CD11b(+) cells and strongly decreased circulating Ly6G(low)CD11b(+) cells. Lipopolysaccharide-treated Map3k8(-/-) mice showed decreased production of granulocyte colony-stimulating factor (G-CSF), a key factor in neutrophil expansion, and a Map3k8 inhibitor blocked lipopolysaccharide-mediated G-CSF expression in endothelial cell lines. Ly6G(low)CD11b(+) BM cells from lipopolysaccharide-treated Map3k8(-/-) mice displayed impaired expression of CCAAT-enhancer-binding protein β, which depends on G-CSF for expression and is crucial for cell cycle acceleration in this life-threatening condition. Accordingly, lipopolysaccharide-treated Map3k8(-/-) mice showed decreased Ly6G(low)CD11b(+) BM cell proliferation, as evidenced by a decrease in the percentage of the most immature precursors, which have the highest proliferation capacity among this cell population. Thus, Map3k8 expression by non-haematopoietic tissue is required for lipopolysaccharide-induced emergency granulopoiesis. The novel observation that inhibition of Map3k8 activity decreases neutrophilia during life-threatening systemic infection suggests a possible risk in the proposed use of Map3k8 blockade as an anti-inflammatory therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app