Add like
Add dislike
Add to saved papers

A fully analytical approach to investigate the electro-viscous effect of the endothelial glycocalyx layer on the microvascular blood flow.

BACKGROUND: Recently, the glycocalyx lining the endothelial surface has emerged as a structure of fundamental importance to a wide range of phenomena that has undeniable effect on cardiovascular health and disease. With respect to the blood flow in small vessels, it has been experimentally reported that the glycocalyx layer causes additional resistance to the flow.

METHODS: The hypothesis of glycocalyx resistance against the blood flow, considered as two-phase layer fluid through a small blood vessel, was theoretically evaluated. To do that, a very thin electric double layer (EDL) was considered and the fluid flow was modeled by the well-known Poisson and Boltzmann equations in micro-fluidics alongside the general Navier-Stokes equation. Finally, a complete analytical solution for this particular case was developed.

RESULTS: The results confirmed the previous findings indicated that the negatively charged glycocalyx layer has no effect on the macro/micro scale blood flow. Here and in the nano-scale, slightly influence was observed and reported in this study.

CONCLUSION: Moreover, more details about the thin electrically significant layer, close to the EDL, would be delineate to better recognition of electro-viscous effect caused by the endothelial glycocalyx near microvascular walls.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app