EVALUATION STUDIES
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Effects of non-physiological blood pressure artefacts on cerebral autoregulation.

Cerebral autoregulation refers to the brain's regulation mechanisms that aim to maintain the cerebral blood flow approximately constant. It is often assessed by the autoregulation index (ARI). ARI uses arterial blood pressure and cerebral blood flow velocity time series to produce a ten-scale index of autoregulation performance (0 denoting the absence of and 9 the strongest autoregulation). Unfortunately, data are rarely free from various artefacts. Here, we consider four of the most common non-physiological blood pressure artefacts (saturation, square wave, reduced pulse pressure and impulse) and study their effects on ARI for a range of different artefact sizes. We show that a sufficiently large saturation and square wave always result in ARI reaching the maximum value of 9. The pulse pressure reduction and impulse artefact lead to more diverse behaviour. Finally, we characterized the critical size of artefacts, defined as the minimum artefact size that, on average, leads to a 10% deviation of ARI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app