Add like
Add dislike
Add to saved papers

Abnormal Alterations of Cortical Thickness in 16 Patients with Type 2 Diabetes Mellitus: A Pilot MRI Study.

Objective The aim of this study is to investigate the cerebral cortical thickness changes in type 2 diabetes mellitus (T2DM) using a whole brain cortical thickness mapping system based on brain magnetic resonance imaging (MRI).Methods High resolution three-dimensional T1-weighted fast spoiled gradient recalled echo MR images were obtained from 16 patients with T2DM, as well as from 16 normal controls. The whole brain cortical thickness maps were generated, and the cortical thickness of each brain region was calculated according to gyral based regions of interest (ROI) using an automated labeling system by the Freesurfer software. We compared mean cortical thickness at each brain region by the analysis of covariance with age and sex as covariates. The regional difference of the cortical thickness over the whole brain was compared by the analysis of surface-based cortical thickness.Results Mean cortical thicknesses analysis showed bilateral cerebrum in the patients with T2DM (left: 2.52±0.07 mm; right: 2.51±0.08 mm) were significant thinner than those in the normal controls (left: 2.56±0.09 mm; right: 2.56±0.09 mm) (both P<0.05). Regional cortical thinning in T2DM was demonstrated in the paracentral lobule, postcentral gyrus, lateral occipital gyrus, lingual gyrus, precuneus, superior temporal gyrus, middle temporal gyrus, inferior temporal gyrus and posterior cingulate gyrus, compared to the normal controls. The cortical thickness of left middle cingulate and right inferior temporal gyrus were negatively correlated with the disease course.Conclusion A widespread cortical thinning was revealed in patients with T2DM by the analysis of brain cortical thickness on MR. Our finding supports the idea that T2DM could lead to subtle diabetic brain structural changes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app