Add like
Add dislike
Add to saved papers

Efficient generation of goats with defined point mutation (I397V) in GDF9 through CRISPR/Cas9.

The recent emergence of the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9 system has attracted significant attention for its potential to improve traits of agricultural importance. However, most applications in livestock species to date have depended on aberrant DNA repair to generate frameshifting indels. Whether this genomic engineering technique involving homology-dependent repair (HDR) can be used to introduce defined point mutations has been less explored. Previously, we reported a G→A point mutation (g.231A>G, p.Val397Ile) in the growth differentiation factor 9 (GDF9) gene that has a large effect on the litter size of cashmere goats. In the present study we report that by co-injecting synthesised RNAs and single-stranded oligo deoxynucleotide (ssODN) donor sequences into goat zygotes, we successfully introduced defined point mutations resulting in single amino acid substitutions in the proteins as expected. The efficiency of this precise single-nucleotide substitution in newborn kids was as high as 24% (4/17), indicating that ssODN-directed HDR via zygote injection is efficient at introducing point mutations in the goat genome. The findings of the present study further highlight the complex genome modifications facilitated by the CRISPR/Cas9 system, which is able to introduce defined point mutations. This represents a significant development for the improvement of reproduction traits in goats, as well as for validating the roles of specific nucleotides in functional genetic elements in large animals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app