JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Dynamic Nuclear Polarization Efficiency Increased by Very Fast Magic Angle Spinning.

Dynamic nuclear polarization (DNP) has recently emerged as a tool to enhance the sensitivity of solid-state NMR experiments. However, so far high enhancements (>100) are limited to relatively low magnetic fields, and DNP at fields higher than 9.4 T significantly drops in efficiency. Here we report solid-state Overhauser effect DNP enhancements of over 100 at 18.8 T. This is achieved through the unexpected discovery that enhancements increase rapidly with increasing magic angle spinning (MAS) rates. The measurements are made using 1,3-bisdiphenylene-2-phenylallyl dissolved in o-terphenyl at 40 kHz MAS. We introduce a source-sink diffusion model for polarization transfer which is capable of explaining the experimental observations. The advantage of this approach is demonstrated on mesoporous alumina with the acquisition of well-resolved DNP surface-enhanced 27 Al cross-polarization spectra.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app