Add like
Add dislike
Add to saved papers

Intraspecific variability in Phaeocystis antarctica's response to iron and light stress.

Phaeocystis antarctica is an abundant phytoplankton species in the Southern Ocean, where growth is frequently limited by iron and light. Being able to grow under low iron conditions is essential to the species' success, but there have been hints that this ability differs among clones. Here, we compare the growth, cell size and chlorophyll a concentrations of four P. antarctica clones cultured under different iron and light conditions. Iron was provided either as unchelated iron (Fe') or bound to the bacterial siderophore desferrioxamine B, representing, respectively, the most and least bioavailable forms of iron which phytoplankton encounter in the marine environment. The growth rate data demonstrate that the clones vary in their ability to grow using organically bound iron, and that this ability is not related to their ability to grow at low inorganic iron concentrations. These results are consistent at low and high light. Physiologically, only three of the four clones shrink or decrease the concentration of chlorophyll a in response to iron limitation, and only one clone decreases colony formation. Together, our data show that P. antarctica clones 1) respond to the same degree of iron limitation using different acclimation strategies, and 2) vary in their ability to grow under the same external iron and light conditions. This physiological diversity is surprisingly large for isolates of a single phytoplankton species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app