Add like
Add dislike
Add to saved papers

The short chain fatty acid receptor GPR43 regulates inflammatory signals in adipose tissue M2-type macrophages.

The regulation of inflammatory responses within adipose tissue by various types of immune cells is closely related to tissue homeostasis and progression of metabolic disorders such as obesity and type 2 diabetes. G-protein-coupled receptor 43 (GPR43), which is activated by short-chain fatty acids (SCFAs), is known to be most abundantly expressed in white adipose tissue and to modulate metabolic processes. Although GPR43 is also expressed in a wide variety of immune cells, whether and how GPR43 in adipose tissue immune cells regulates the inflammatory responses and metabolic homeostasis remains unknown. In this study, we investigated the role of GPR43 in adipose tissue macrophages by using Gpr43-deficient mice and transgenic mice with adipose-tissue-specific overexpression of GPR43. We found that GPR43 activation by SCFA resulted in induction of the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) in anti-inflammatory M2-type macrophages within adipose tissue. By contrast, this effect was not noted in inflammatory M1-type macrophages, suggesting that GPR43 plays distinct functions depending on macrophage types. Local TNF-α signaling derived from steady-state adipose tissue is associated with proper tissue remodeling as well as suppression of fat accumulation. Thus, GPR43-involving mechanism that we have identified supports maintenance of adipose tissue homeostasis and increase in metabolic activity. This newly identified facet of GPR43 in macrophages may have clinical implications for immune-metabolism related episodes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app