Add like
Add dislike
Add to saved papers

Benchmark ab Initio Characterization of the Complex Potential Energy Surface of the Cl - + CH 3 I Reaction.

Benchmark stationary-point structures, vibrational frequencies, and classical/adiabatic relative energies (kcal/mol) are reported for the Cl- + CH3 I reaction along the back-side attack (ΔETS = -5.48/-5.54) inversion, front-side attack (ΔETS = 36.73/35.89) and double-inversion (ΔETS = 46.97/42.55) retention SN 2 pathways, the proton-transfer channel, and the hydride-substitution reaction path. The structures and frequencies are obtained by the frozen-core CCSD(T), CCSD(T)-F12a, and CCSD(T)-F12b methods with the aug-cc-pVnZ [n = D, T, and Q for structures and n = D and T for frequencies] basis sets and all-electron CCSD(T) with aug-cc-pwCVnZ [n = D and T for structures and n = D for frequencies]. The benchmark relative energies are determined using the focal-point analysis approach based on electron correlation methods up to CCSDT(Q), extrapolations to the complete basis set limits using aug-cc-pVnZ [n = 2(D), 3(T), 4(Q), and 5] bases, core correlation contributions obtained at CCSD(T)/aug-cc-pwCVQZ, and, for the adiabatic energies, zero-point energy corrections at the CCSD(T)-F12b/aug-cc-pVTZ level of theory. We usually find significant method and modest basis dependence for the energies. The post-CCSD(T) and core correlation effects are often about 0.4 kcal/mol, but almost cancel each other. The explicitly correlated CCSD(T)-F12 methods are recommended for geometry and frequency computations as well as for energy computations if the basis set dependence is significant.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app