Add like
Add dislike
Add to saved papers

Designing effective 'frustrated Lewis pair' hydrogenation catalysts.

The past decade has seen the subject of transition metal-free catalytic hydrogenation develop incredibly rapidly, transforming from a largely hypothetical possibility to a well-established field that can be applied to the reduction of a diverse variety of functional groups under mild conditions. This remarkable change is principally attributable to the development of so-called 'frustrated Lewis pairs': unquenched combinations of bulky Lewis acids and bases whose dual reactivity can be exploited for the facile activation of otherwise inert chemical bonds. While a number of comprehensive reviews into frustrated Lewis pair chemistry have been published in recent years, this tutorial review aims to provide a focused guide to the development of efficient FLP hydrogenation catalysts, through identification and consideration of the key factors that govern their effectiveness. Following discussion of these factors, their importance will be illustrated using a case study from our own research, namely the development of FLP protocols for successful hydrogenation of aldehydes and ketones, and for related moisture-tolerant hydrogenation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app