Add like
Add dislike
Add to saved papers

Incidence of OXA-23 and OXA-58 Carbapenemases Coexpressed in Clinical Isolates of Acinetobacter baumannii in Tunisia.

Acinetobacter baumannii is an important opportunistic and multidrug-resistant pathogen responsible for nosocomial infections in health facilities. The aim of this study was to characterize the molecular mechanisms of carbapenem resistance in A. baumannii isolates isolated from Mohamed Kassab Orthopedic Institute in Tunis, Tunisia. Twenty-five imipenem-resistant A. baumannii clinical isolates collected between 2013 and 2016 were identified using API 20NE and were confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS). Carbapenemase activity was detected using microbiological tests and PCR. The epidemiological relatedness of the isolates was studied using multilocus sequence typing (MLST). The isolates were resistant to all antibiotics tested with increased minimum inhibitory concentration values (>32 mg/L). The microbiological tests showed that the 25 A. baumannii were positive for modified Hodge test and for the Carba NP test; however, β-lactamase activity was not inhibited by EDTA. All the isolates harbored the naturally occurring blaOXA-51 -like gene and the blaOXA-23 -like carbapenemase gene. Among these isolates, one isolate coexpressed the blaOXA-58 gene. MLST revealed several sequence types (STs) with the predominance of ST2 imipenem-resistant A. baumannii (14/25; 56%). In this study we report the prevalence of ST2 imipenem resistance and for the first time the coexpression of blaOXA-23 and blaOXA-58 in clinical isolates of A. baumannii in a Tunisian hospital.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app