Add like
Add dislike
Add to saved papers

The Microwave Spectrum and Molecular Structure of (Z)-1-Chloro-2-Fluoroethylene-Acetylene: Demonstrating the Importance of the Balance Between Steric and Electrostatic Interactions in Heterodimer Formation.

The structure of the gas-phase heterodimer formed between (Z)-1-chloro-2-fluoroethylene and acetylene is determined via Fourier transform microwave spectroscopy from 5.5 to 20.8 GHz. In the first instance where in the presence of both a fluorine atom and a chlorine atom on the haloethylene the protic acid binds to the chlorine atom, the acetylene adopts a configuration similar to that in the analogous complex with vinyl chloride. Positioned in a manner to interact favorably with both the chlorine atom and the hydrogen atom geminal to it, the acetylene molecule is able to maximize the overall electrostatic stabilization even though other regions of the haloethylene offer individual sites of greater positive or negative electrostatic potential. Detailed comparison with the vinyl chloride-acetylene complex suggests that the presence of the fluorine atom weakens the hydrogen bond but strengthens the interaction between the geminal hydrogen atom and the triple bond.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app