Add like
Add dislike
Add to saved papers

High-Performance Li-Se Batteries Enabled by Selenium Storage in Bottom-Up Synthesized Nitrogen-Doped Carbon Scaffolds.

Selenium (Se) has great promise to serve as cathode material for rechargeable batteries because of its good conductivity and high theoretical volumetric energy density comparable to sulfur. Herein, we report the preparation of mesoporous nitrogen-doped carbon scaffolds (NCSs) to restrain selenium for advanced lithium-selenium (Li-Se) batteries. The NCSs synthesized by a bottom-up solution-phase method have graphene-like laminar structure and well-distributed mesopores. The unique architecture of NCSs can severe as conductive framework for encapsulating selenium and polyselenides, and provide sufficient pathways to facilitate ion transport. Furthermore, the laminar and porous NCSs can effectively buffer the volume variation during charge/discharge processes. The integrated composite of Se-NCSs has a high Se content and can ensure the complete electrochemical reactions of Se and Li species. When used for Li-Se batteries, the cathodes based on Se-NCSs exhibit high capacity, remarkable cyclability, and excellent rate performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app