Add like
Add dislike
Add to saved papers

Effects of long- and short-term darbepoetin-α treatment on oxidative stress, inflammation and endothelial injury in ApoE knockout mice.

BACKGROUND: Atherosclerosis and atherosclerosis-related complications are the main cause of death in the world. Vascular injury in response to inflammation and enhanced oxidant stress promotes endothelial dysfunction and leads to atherosclerotic lesions.

OBJECTIVES: Low-dose treatment with darbepoetin-α may be a potential therapeutic tool for endothelial injury and atherosclerosis.

MATERIAL AND METHODS: In order to study the effect of darbepoetin-α on endothelial injury and atherosclerosis, we used ApoE-/- mice as the atherosclerotic mice model. We monitored atherosclerosis and plaque formation histochemically in ApoE knockout mice at early and late stages of atherosclerosis. Darbepoetin-α was injected intraperitoneally at a dose of 0.1 μg/kg to ApoE-/- mice. The results of 2 ApoE-/- mice groups injected with darbepoetin-α (early and late stages of atherosclerosis) were compared to the results of the corresponding saline injected ApoE-/- mice groups and the control (C57BL/6) mice.

RESULTS: Lipid profile (total cholesterol, triglyceride), inflammation (CRP, IL-6, histamine), endothelial injury (ICAM-1, selectin) and oxidative stress markers (lipid peroxidation, protein oxidation) were significantly increased in 4 atherosclerotic groups compared to the control group. Short-term darbepoetin-α had no marked effects on indicators of inflammation and endothelial injury in the ApoE knockout mice groups compared to the ApoE knockout mice not treated with darbepoetin-α, however, darbepoetin-α significantly decreased 8-isoprostane and protein carbonyl content. Long term darbepoetin-α treatment reduced oxidative stress in ApoE-/- mice.

CONCLUSIONS: This study contributes to understanding and elucidating the biochemical changes occurring during early and late stages of atherosclerosis development regarding lipid profile, inflammation, endothelial injury and oxidative stress markers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app