Add like
Add dislike
Add to saved papers

Abnormal Pressure-Induced Photoluminescence Enhancement and Phase Decomposition in Pyrochlore La 2 Sn 2 O 7 .

Advanced Materials 2017 September
La2 Sn2 O7 is a transparent conducting oxide (TCO) material and shows a strong near-infrared fluorescent at ambient pressure and room temperature. By in situ high-pressure research, pressure-induced visible photoluminescence (PL) above 2 GPa near 2 eV is observed. The emergence of unusual visible PL behavior is associated with the seriously trigonal lattice distortion of the SnO6 octehedra, under which the Sn-O1-Sn exchange angle θ is decreased below 22.1 GPa, thus enhancing the PL quantum yield leading to Sn 3 P1 → 1 S0 photons transition. Besides, bandgap closing followed by bandgap opening and the visible PL appearing at the point of the gap reversal, which is consistent with high-pressure phase decomposition, are discovered. The high-pressure PL results demonstrate a well-defined pressure window (7-17 GPa) with flat maximum PL yielding and sharp edges at both ends, which may provide a great calibration tool for pressure sensors for operation in the deep sea or at extreme conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app