Add like
Add dislike
Add to saved papers

Transverse relaxation time constants of the five major metabolites in human brain measured in vivo using LASER and PRESS at 3 T.

PURPOSE: The goal of this study was to measure and compare the apparent transverse relaxation time constants (T2 ) of five intracellular metabolites using localization by adiabatic selective refocusing (LASER) and point-resolved spectroscopy (PRESS) sequences in the human brain at 3 T.

METHODS: Five healthy subjects were studied at 3 T.1 H spectra from the prefrontal cortex were acquired at six different echo times using LASER and PRESS sequences. Postprocessed data were analyzed with LCModel, and the resulting amplitudes were fitted using a mono-exponential decay function to determine the T2 of metabolites.

RESULTS: Twenty-one percent higher apparent T2 values for the singlet resonances of N-acetyl aspartate, total creatine, and total choline were measured with LASER as compared with PRESS, whereas comparable apparent T2 values were measured for strongly coupled metabolites, glutamate, and myo-inositol, with both sequences.

CONCLUSIONS: Reliable T2 measurements were obtained with both sequences for the five major intracellular metabolites. The LASER sequence appears to be more efficient in suppressing the diffusion component for singlets (having nonexchangeable protons) compared to J-coupled metabolites. Magn Reson Med 79:1260-1265, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app