Add like
Add dislike
Add to saved papers

Atypical skeletal manifestations of rickets in a familial hypocalciuric hypercalcemia patient.

Familial hypocalciuric hypercalcemia (FHH) is caused by inactivating mutations in the calcium-sensing receptor (CaSR) gene. The loss of function of CaSR presents with rickets as the predominant skeletal abnormality in mice, but is rarely reported in humans. Here we report a case of a 16-year-old boy with FHH who presented with skeletal manifestations of rickets. To identify the possible pathogenic mutation, the patient was evaluated clinically, biochemically, and radiographically. The patient and his family members were screened for genetic mutations. Physical examination revealed a pigeon breast deformity and X-ray examinations showed epiphyseal broadening, both of which indicate rickets. Biochemical tests also showed increased parathyroid hormone (PTH), 1,25-dihydroxyvitamin D, and elevated ionized calcium. Based on these results, a diagnosis of FHH was suspected. Sequence analysis of the patient's CaSR gene revealed a new missense mutation (c.2279T>A) in exon 7, leading to the damaging amino change (p.I760N) in the mature CaSR protein, confirming the diagnosis of FHH. Moreover, the skeletal abnormities may be related to but not limited to vitamin D abnormity. Elevated PTH levels and a rapid skeletal growth period in adolescence may have also contributed. Our study revealed that rickets-like features have a tendency to present atypically in FHH patients who have a mild vitamin D deficiency, and that CaSR mutations may have a partial role in the pathogenesis of skeletal deformities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app