Add like
Add dislike
Add to saved papers

Design of a Magnetic Resonance Imaging Guided Magnetically Actuated Steerable Catheter.

This paper presents design optimization of a magnetic resonance imaging (MRI) actuated steerable catheter for atrial fibrillation ablation in the left atrium. The catheter prototype, built over polymer tubing, is embedded with current-carrying electromagnetic coils. The prototype can be deflected to a desired location by controlling the currents passing through the coils. The design objective is to develop a prototype that can successfully accomplish the ablation task. To complete the tasks, the catheter needs to be capable of reaching a set of desired targets selected by a physician on the chamber and keeping a stable contact with the chamber surface. The design process is based on the maximization of the steering performance of the catheter by evaluating its workspace in free space. The selected design is validated by performing a simulation of an ablation intervention on a virtual model of the left atrium with a real atrium geometry. This validation shows that the prototype can reach every target required by the ablation intervention and provide an appropriate contact force against the chamber.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app