Add like
Add dislike
Add to saved papers

Genomic Investigation of Balanced Chromosomal Rearrangements in Patients with Abnormal Phenotypes.

Balanced chromosomal rearrangements (BCR) are associated with abnormal phenotypes in approximately 6% of balanced translocations and 9.4% of balanced inversions. Abnormal phenotypes can be caused by disruption of genes at the breakpoints, deletions, or positional effects. Conventional cytogenetic techniques have a limited resolution and do not enable a thorough genetic investigation. Molecular techniques applied to BCR carriers can contribute to the characterization of this type of chromosomal rearrangement and to the phenotype-genotype correlation. Fifteen individuals among 35 with abnormal phenotypes and BCR were selected for further investigation by molecular techniques. Chromosomal rearrangements involved 11 reciprocal translocations, 3 inversions, and 1 balanced insertion. Array genomic hybridization (AGH) was performed and genomic imbalances were detected in 20% of the cases, 1 at a rearrangement breakpoint and 2 further breakpoints in other chromosomes. Alterations were further confirmed by FISH and associated with the phenotype of the carriers. In the analyzed cases not showing genomic imbalances by AGH, next-generation sequencing (NGS), using whole genome libraries, prepared following the Illumina TruSeq DNA PCR-Free protocol (Illumina®) and then sequenced on an Illumina HiSEQ 2000 as 150-bp paired-end reads, was done. The NGS results suggested breakpoints in 7 cases that were similar or near those estimated by karyotyping. The genes overlapping 6 breakpoint regions were analyzed. Follow-up of BCR carriers would improve the knowledge about these chromosomal rearrangements and their consequences.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app