JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Graphene oxide nanosheets in complex with cell penetrating peptides for oligonucleotides delivery.

A new strategy for gene transfection using the nanocarrier of cell penetrating peptides (CPPs; PepFect14 (PF14) or PepFect14 (PF14) (PF221)) in complex with graphene oxide (GO) is reported. GO complexed with CPPs and plasmid (pGL3), splice correction oligonucleotides (SCO) or small interfering RNA (siRNA) are performed. Data show adsorption of CPPs and oligonucleotides on the top of the graphenic lamellar without any observed change of the particle size of GO. GO mitigates the cytotoxicity of CPPs and improves the material biocompatibility. Complexes of GO-pGL3-CPPs (CPPs; PF14 or PF221) offer 2.1-2.5 fold increase of the cell transfection compared to pGL3-CPPs (CPPs; PF14 or PF221). GO-SCO-PF14 assemblies effectively transfect the cells with an increase of >10-25 fold compared to the transfection using PF14. The concentration of GO plays a significant role in the material nanotoxicity and the transfection efficiency. The results open a new horizon in the gene treatment using CPPs and offer a simple strategy for further investigations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app