COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Comparison of phenotypic and global gene expression changes in Xenopus tropicalis embryos induced by agonists of RAR and RXR.

Retinoic acid functions through two classes of receptors, i.e., the retinoic acid receptor (RAR) and the retinoid X receptor (RXR). The difference in the role between RAR and RXR, however, are not well clarified. In the present study, we comparatively investigated the phenotypic and global gene expression changes in Xenopus tropicalis embryos induced by three different agonists, including a RAR selective ligand (all-trans retinoic acid, at-RA), a RXR selective ligand (fluorobexarotene, FBA) and their common ligand (9-cis retinoic acid, 9c-RA). All three agonists induced striking and similar malformations in X. tropicalis embryos at the concentrations of 5-50μg/L. Especially, the development of anterior structures and caudal region was dramatically altered. The hierarchical clustering analysis of phenotypes and gene profiles suggested that effects induced by 9c-RA separated from those by at-RA and FBA. The up-regulated genes were involved in multiple pathways while down-regulated genes were mainly related to phototransduction and tyrosine metabolism. at-RA primarily affected the retinol, glycolysis, starch and sucrose metabolisms while FBA led to disturbances in more wide-ranging pathways such as the PPAR, adipocytokine, insulin, FoxO signaling pathways, alanine, aspartate and glutamate metabolism. RXR is a heterodimeric partner for several other nuclear receptors, which opens the possibility that additional retinoid effects could be mediated by FBA, such as RXR-PPAR. Our data indicates that not only RXR-RAR but also RXR-PPAR plays important roles in the control of metabolism with retinoid treatment in X. tropicalis embryos.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app