Add like
Add dislike
Add to saved papers

Strain-induced phase transformation behavior of stabilized zirconia ceramics studied via nanoindentation.

To study the tetragonal-to-monoclinic (T-M) phase transformation behavior under different strain rates and indentation depths, nanoindentation tests were performed on stabilized zirconia ceramics with Continuous Stiffness Measurements. The results indicate decreased phase transformation velocities at both lower and higher strain rates, but increased velocity under medium strain rate during loading. The phase transformation process is sensitive to Ṗ/P but the final volume fractions are almost identical (45%). Furthermore, most of the phase transformation is completed during a short initial time followed by slight linear increase of the M-phase volume fraction with holding time. The phase transformation continuously slowed with increasing indentation depth when indented with a constant strain rate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app