Add like
Add dislike
Add to saved papers

Directional analysis of cardiac motion field from gated fluorodeoxyglucose PET images using the Discrete Helmholtz Hodge Decomposition.

OBJECTIVES: Extract directional information related to left ventricular (LV) rotation and torsion from a 4D PET motion field using the Discrete Helmholtz Hodge Decomposition (DHHD).

MATERIALS AND METHODS: Synthetic motion fields were created using superposition of rotational and radial field components and cardiac fields produced using optical flow from a control and patient image. These were decomposed into curl-free (CF) and divergence-free (DF) components using the DHHD.

RESULTS: Synthetic radial components were present in the CF field and synthetic rotational components in the DF field, with each retaining its center position, direction of motion and diameter after decomposition. Direction of rotation at apex and base for the control field were in opposite directions during systole, reversing during diastole. The patient DF field had little overall rotation with several small rotators.

CONCLUSIONS: The decomposition of the LV motion field into directional components could assist quantification of LV torsion, but further processing stages seem necessary.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app