Add like
Add dislike
Add to saved papers

Ion and velocity map imaging for surface dynamics and kinetics.

We describe a new instrument that uses ion imaging to study molecular beam-surface scattering and surface desorption kinetics, allowing independent determination of both residence times on the surface and scattering velocities of desorbing molecules. This instrument thus provides the capability to derive true kinetic traces, i.e., product flux versus residence time, and allows dramatically accelerated data acquisition compared to previous molecular beam kinetics methods. The experiment exploits non-resonant multiphoton ionization in the near-IR using a powerful 150-fs laser pulse, making detection more general than previous experiments using resonance enhanced multiphoton ionization. We demonstrate the capabilities of the new instrument by examining the desorption kinetics of CO on Pd(111) and Pt(111) and obtain both pre-exponential factors and activation energies of desorption. We also show that the new approach is compatible with velocity map imaging.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app