Add like
Add dislike
Add to saved papers

Intermediate state dependence of the photoelectron circular dichroism of fenchone observed via femtosecond resonance-enhanced multi-photon ionization.

The intermediate state dependence of photoelectron circular dichroism (PECD) in resonance-enhanced multi-photon ionization of fenchone in the gas phase is experimentally studied. By scanning the excitation wavelength from 359 to 431 nm, we simultaneously excite up to three electronically distinct resonances. In the PECD experiment performed with a broadband femtosecond laser, their respective contributions to the photoelectron spectrum can be resolved. High-resolution spectroscopy allows us to identify two of the resonances as belonging to the B- and C-bands, which involve excitation to states with 3s and 3p Rydberg character, respectively. We observe a sign change in the PECD signal, depending on which electronic state is used as an intermediate, and are able to identify two differently behaving contributions within the C-band. Scanning the laser wavelength reveals a decrease of PECD magnitude with increasing photoelectron energy for the 3s state. Combining the results of high-resolution spectroscopy and femtosecond experiment, the adiabatic ionization potential of fenchone is determined to be IPa Fen =(8.49±0.06) eV.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app