Add like
Add dislike
Add to saved papers

A new parameter for quantifying the variability of surface electromyographic signals during gait: The occurrence frequency.

Natural variability of myoelectric activity during walking was recently analyzed considering hundreds of strides. This allowed assessing a parameter seldom considered in classic surface EMG (sEMG) studies: the occurrence frequency, defined as the frequency each muscle activation occurs with, quantified by the number of strides when a muscle is recruited with that specific activation modality. Aim of present study was to propose the occurrence frequency as a new parameter for assessing sEMG-signal variability during walking. Aim was addressed by processing sEMG signals acquired from Gastrocnemius Lateralis, Tibialis Anterior, Rectus Femoris and Biceps femoris in 40 healthy subjects in order to: (1) show that occurrence frequency is not correlated with ON/OFF instants (Rmean =0.11±0.07; P>0.05) and total time of activation (Rmean =0.15±0.08; P>0.05); (2) confirm the above results by two handy examples of application (analysis of gender and age) which highlighted that significant (P<0.05) gender-related and age-related differences within population were detected in occurrence frequency, but not in temporal sEMG parameters. In conclusion, present study demonstrated that occurrence frequency is able to provide further information, besides those supplied by classical temporal sEMG parameters and thus it is suitable to complement them in the evaluation of variability of myoelectric activity during walking.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app