JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Site-selective covalent reactions on proteinogenic amino acids.

To achieve precise control of the signaling events or to achieve unmistakable synthesis of biomolecules, nature has evolved organic reactions involving proteinogenic amino acids with unparalleled site selectivity. For example, dedicated enzymes accurately dictate the site of post-translational modifications in signaling proteins, and ribosomes precisely link the C-terminal carboxylic acid of one unprotected amino acid with the N-terminal amino group of the other amino acid through spatially confined proximity. For many years, chemists have been striving to achieve site selectivity on biomolecules by mimicking nature. Driven by the development of chemoselective protein conjugation reactions, enzymology and protein-protein interactions, the past decade has witnessed a boom in site-selective protein conjugation reactions. (In this review, a site-selective protein conjugation reaction is defined as an organic reaction that targets a single amino acid instead of a kind of amino acids in a protein or a proteome under physiological conditions, for example, a single cysteine residue among all of the cysteines.) In this review, we summarize the recent advancements of bioconjugation reactions that demonstrate this feature of precise site selectivity, focusing on the reactions of the proteinogenic amino acids (excluding those at non-coded or non-proteinogenic amino acids that are introduced to proteins through genetic manipulations).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app