Add like
Add dislike
Add to saved papers

Metformin Accelerates Glycolytic Lactate Production in Cultured Primary Cerebellar Granule Neurons.

Metformin is the most frequently used drug for the treatment of type-II diabetes. As metformin has been reported to cross the blood-brain barrier, brain cells will encounter this drug. To test whether metformin may affect the metabolism of neurons, we exposed cultured rat cerebellar granule neurons to metformin. Treatment with metformin caused a time- and concentration-dependent increase in glycolytic lactate release from viable neurons as demonstrated by the three-to fivefold increase in extracellular lactate concentration determined after exposure to metformin. Half-maximal stimulation of lactate production was found after incubation of neurons for 4 h with around 2 mM or for 24 h with around 0.5 mM metformin. Neuronal cell viability was not affected by millimolar concentrations of metformin during acute incubations in the hour range nor during prolonged incubations, although alterations in cell morphology were observed during treatment with 10 mM metformin for days. The acute stimulation of neuronal lactate release by metformin was persistent upon removal of metformin from the medium and was not affected by the presence of modulators of adenosine monophosphate activated kinase activity. In contrast, rabeprazole, an inhibitor of the organic cation transporter 3, completely prevented metformin-mediated stimulation of neuronal lactate production. In summary, the data presented identify metformin as a potent stimulator of glycolytic lactate production in viable cultured neurons and suggest that organic cation transporter 3 mediates the uptake of metformin into neurons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app