Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Innate IFN-γ-Producing Cells Developing in the Absence of IL-2 Receptor Common γ-Chain.

Journal of Immunology 2017 August 16
IFN-γ is known to be predominantly produced by lymphoid cells such as certain subsets of T cells, NK cells, and other group 1 innate lymphoid cells. In this study, we used IFN-γ reporter mouse models to search for additional cells capable of secreting this cytokine. We identified a novel and rare population of nonconventional IFN-γ-producing cells of hematopoietic origin that were characterized by the expression of Thy1.2 and the lack of lymphoid, myeloid, and NK lineage markers. The expression of IFN-γ by this population was higher in the liver and lower in the spleen. Furthermore, these cells were present in mice lacking both the Rag2 and the common γ-chain (γc) genes (Rag2-/- γc-/- ), indicating their innate nature and their γc cytokine independence. Rag2-/- γc-/- mice are as resistant to Mycobacterium avium as Rag2-/- mice, whereas Rag2-/- mice lacking IFN-γ are more susceptible than either Rag2-/- or Rag2-/- γc-/- These lineage-negative CD45+ /Thy1.2+ cells are found within the mycobacterially induced granulomatous structure in the livers of infected Rag2-/- γc-/- animals and are adjacent to macrophages that expressed inducible NO synthase, suggesting a potential protective role for these IFN-γ-producing cells. Accordingly, Thy1.2-specific mAb administration to infected Rag2-/- γc-/- animals increased M. avium growth in the liver. Overall, our results demonstrate that a population of Thy1.2+ non-NK innate-like cells present in the liver expresses IFN-γ and can confer protection against M. avium infection in immunocompromised mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app