Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Thioredoxin reductase from Toxoplasma gondii : an essential virulence effector with antioxidant function.

Thioredoxin reductase (TR) can help pathogens resist oxidative-burst injury from host immune cells by maintaining a thioredoxin-reduction state during NADPH consumption. TR is a necessary virulence factor that enables the persistent infection of some parasites. We performed bioinformatics analyses and biochemical assays to characterize the activity, subcellular localization, and genetic ablation of Toxoplasma gondii TR (TgTR), to shed light on its biologic function. We expressed the TgTR protein with an Escherichia coli expression system and analyzed its enzyme activity, reporting a K m for the recombinant TgTR of 11.47-15.57 μM, using NADPH as a substrate, and 130.48-151.09 μM with dithio-bis-nitrobenzoic acid as a substrate. The TgTR sequence shared homology with that of TR, but lacked a selenocysteine residue in the C-terminal region and was thought to contain 2 flavin adenine dinucleotide (FAD) domains and 1 NADPH domain. In addition, immunoelectron microscopy results showed that TgTR was widely dispersed in the cytoplasm, and we observed that parasite antioxidant capacity, invasion efficiency, and proliferation were decreased in TR-knockout (TR-KO) strains in vitro , although this strain still stimulated the release of reactive oxygen species release in mouse macrophages while being more sensitive to H2 O2 toxicity in vitro Furthermore, our in vivo results revealed that the survival time of mice infected with the TR-KO strain was significantly prolonged relative to that of mice infected with the wild-type strain. These results suggest that TgTR plays an important role in resistance to oxidative damage and can be considered a virulence factor associated with T. gondii infection.-Xue, J., Jiang, W., Chen, Y., Gong, F., Wang, M., Zeng, P., Xia, C., Wang, Q., Huang, K. Thioredoxin reductase from Toxoplasma gondii : an essential virulence effector with antioxidant function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app