JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Neural inhibition can explain negative BOLD responses: A mechanistic modelling and fMRI study.

NeuroImage 2017 September
Functional magnetic resonance imaging (fMRI) of hemodynamic changes captured in the blood oxygen level-dependent (BOLD) response contains information of brain activity. The BOLD response is the result of a complex neurovascular coupling and comes in at least two fundamentally different forms: a positive and a negative deflection. Because of the complexity of the signaling, mathematical modelling can provide vital help in the data analysis. For the positive BOLD response, there are plenty of mathematical models, both physiological and phenomenological. However, for the negative BOLD response, no physiologically based model exists. Here, we expand our previously developed physiological model with the most prominent mechanistic hypothesis for the negative BOLD response: the neural inhibition hypothesis. The model was trained and tested on experimental data containing both negative and positive BOLD responses from two studies: 1) a visual-motor task and 2) a working-memory task in conjunction with administration of the tranquilizer diazepam. Our model was able to predict independent validation data not used for training and provides a mechanistic underpinning for previously observed effects of diazepam. The new model moves our understanding of the negative BOLD response from qualitative reasoning to a quantitative systems-biology level, which can be useful both in basic research and in clinical use.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app