Add like
Add dislike
Add to saved papers

Reproducibility of ultrasound-derived muscle thickness and echo-intensity for the entire quadriceps femoris muscle.

Radiography 2017 August
INTRODUCTION: Muscle thickness (MT) and muscle echo-intensity (EI) allow the study of skeletal muscle adaptive changes with ultrasound. This study investigates the intra- and inter-session reliability and agreement of MT and EI measurements for each of the four heads of the quadriceps femoris in transverse and longitudinal scans, using two sizes for the region of interest (ROI); EI measurements only.

METHODS: Three B-mode images from two views were acquired from each head of quadriceps femoris from twenty participants (10 females) in two sessions, 7 days apart. EI was measured using a large and a small ROI. Reliability was examined with the mixed two-way intra-class correlation coefficient (ICC), the standard error of mean (SEM) and the smallest detectable change (SDC). Bland-Altman's plots were used to study agreement.

RESULTS: High to very high inter-session ICC values were found for MT for all muscle heads, particularly for measurements from transverse scans. For EI measurement, ICC values ranged from low to high, with higher ICC values seen with the largest ROI. SDC values ranged between 0.19 and 0.53 cm for MT and between 3.73 and 18.56 arbitrary units (a.u.) for two ROIs. Good agreement existed between MT measurements made in both scans. A small bias and larger 95% limits of agreement were seen for EI measurements collected with the two ROI sizes.

CONCLUSION: Ultrasound measures of MT and EI show moderate to very high reliability. The reliability and agreement of MT and EI measurements are improved in transverse scans and with larger ROIs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app