Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inline Shunt Flow Monitor for Hydrocephalus.

Analytical Chemistry 2017 August 2
In hydrocephalus, cerebrospinal fluid (CSF) builds up in the cranial cavity causing swelling of the head and potentially brain damage. A shunt to drain the fluid into a body cavity is now universally used, but failure is all too common. Techniques for ascertaining shunt failure are time-consuming, expertise-dependent, and often inconclusive. We report here an inline system that reliably and quantitatively measures the CSF flow rate. The system uses a single thermistor to both heat the surrounding and to sense the temperature. In the heating mode, the thermistor is subjected to a 5 s voltage pulse. In the sensing mode, it is part of a Wheatstone's bridge, the output being proportional to temperature. The signal, Vi - Vf , which is the net change ΔV in the bridge output immediately before and after the heat pulse, depends both on the flow rate and the surrounding temperature. In vitro, a single equation, flow rate = 3.75 × 10-6 × ΔV(-9.568+1.088 Vi ) provided good prediction for the flow rate, with 6.3% RMS relative error. The sensor behavior is reported for flow rates between 0-52.5 mL/h at 32-39 °C, adequately covering the range of interest.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app