Add like
Add dislike
Add to saved papers

Monoclinic ZIF-8 Nanosheet-Derived 2D Carbon Nanosheets as Sulfur Immobilizer for High-Performance Lithium Sulfur Batteries.

2D hierarchically porous carbon (2D-HPC) nanosheets with unique advantages are highly desired as host materials for lithium sulfur (Li-S) batteries and other energy storage devices. Herein, we propose a self-template and organic solvent-free approach to synthesize nanosheets of monoclinic ZIF-8 at room temperature from which 2D-HPC nanosheets (ZIF-8 nanosheets carbon denoted as ZIF-8-NS-C) are derived to be an efficient sulfur immobilizer for Li-S batteries for the first time. The anisotropic nanosheets are believed to relate to the symmetry of the monoclinic structure. The 2D ZIF-8-NS-C nanosheets with embedded hierarchical pores construct an effective conductive network through "plane-to-plane" modes to endow superior electron transfer and fast electrochemical kinetics. Moreover, the nitrogen-rich feature of ZIF-8-NS-C can increase the affinity/interaction of carbon host with lithium polysulfides, favoring the cyclic performance. The sulfur/ZIF-8-NS-C (S/ZIF-8-NS-C) cathode shows a superior rate capability with high capacities of 1226 mA h g-1 at 0.2 C and 785 mA h g-1 at 2 C, and a sustainable cycling stability with a capacity attenuation of 0.12% per cycle at 0.5 C for 300 cycles. The approach proposed here pioneers the controllable design of MOF-based structures to inspire the exploration of more variable MOF-derived porous materials for energy storage applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app