Add like
Add dislike
Add to saved papers

Interactions and effects of metal oxide nanoparticles on microorganisms involved in biological wastewater treatment.

To clarify the toxicological effects of metal oxide nanoparticles (NPs) on microorganisms with environmental relevance, it is necessary to understand their interactions. In this work, they were studied the effects and the morphological interactions of two metal oxide NPs (ZnO and TiO2 ) with microorganisms, during aerobic treatment of wastewater. The effects were evaluated according to nutrient removal from wastewater, while morphological interactions were determined by three different techniques such as TEM, HAADF-STEM, as well as an elemental mapping. According to results about effects of both NPs, they inhibited the removal of organic matter and ammonia nitrogen, and enhanced the orthophosphate removal. Related to morphological interactions, the electron-dense material of both NPs was mainly observed bounded to cell membrane. In tests with ZnO NPs, it was also observed electron-dense material internalized in microorganisms without physical damage in cell membrane. The elemental mapping was useful to determine that the electron-dense material corresponded to Zn and Ti. Both interactions, internalization and attachment of NPs on cell membrane of microorganisms may trigger the negative effect in the removal of organic matter and nitrogen.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app