Add like
Add dislike
Add to saved papers

Trifluoromethylation of a Well-Defined Square-Planar Aryl-Ni II Complex involving Ni III /CF 3 . and Ni IV -CF 3 Intermediate Species.

Ni-mediated trifluoromethylation of an aryl-Br bond in model macrocyclic ligands (Ln -Br) has been thoroughly studied, starting with an oxidative addition at Ni0 to obtain well-defined aryl-NiII -Br complexes ([Ln -NiII ]Br). Abstraction of the halide with AgX (X=OTf- or ClO4 - ) thereafter provides [Ln -NiII ](OTf). The nitrate analogue has been obtained through a direct C-H activation of an aryl-H bond using NiII salts, and this route has been studied by X-ray absorption spectroscopy (XAS). Crystallographic XRD and XAS characterization has shown a tight macrocyclic coordination in the aryl-NiII complex, which may hamper direct reaction with nucleophiles. On the contrary, enhanced reactivity is observed with oxidants, and the reaction of [Ln -NiII ](OTf) with CF3 + sources afforded Ln -CF3 products in quantitative yield. A combined experimental and theoretical mechanistic study provides new insights into the operative mechanism for this transformation. Computational analysis indicates the occurrence of an initial single electron transfer (SET) to 5-(trifluoromethyl)dibenzothiophenium triflate (TDTT), producing a transient L1 -NiIII /CF3 . adduct, which rapidly recombines to form a [L1 -NiIV -CF3 ](X)2 intermediate species. A final facile reductive elimination affords L1 -CF3 . The well-defined square-planar model system studied here permits to gain fundamental knowledge on the rich redox chemistry of nickel, which is sought to facilitate the development of new Ni-based trifluoromethylation methodologies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app