Add like
Add dislike
Add to saved papers

Lead and selenite adsorption at water-goethite interfaces from first principles.

The complexation of toxic and/or radioactive ions on to mineral surfaces is an important topic in geochemistry. We apply periodic-boundary-conditions density functional theory (DFT) molecular dynamics simulations to examine the coordination of Pb(II), [Formula: see text], and their contact ion pairs to goethite (1 0 1) and (2 1 0) surfaces. The multitude of Pb(II) adsorption sites and possibility of Pb(II)-induced FeOH deprotonation make this a complex problem. At surface sites where Pb(II) is coordinated to three FeO and/or FeOH groups, and with judicious choices of FeOH surface group protonation states, the predicted Fe-Pb distances are in good agreement with EXAFS measurements. Trajectories where Pb(II) is in part coordinated to only two surface Fe-O groups exhibit larger fluctuations in Pb-O distances. Pb(II)/[Formula: see text] contact ion pairs are at least metastable on goethite (2 1 0) surfaces if the [Formula: see text] has a monodentate Se-O-Fe bond. Our DFT-based molecular dynamics calculations are a prerequisite for calculations of finite temperature equilibrium binding constants of Pb(II) and Pb(II)/[Formula: see text] ion pairs to goethite adsorption sites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app