Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Downregulation of ATG5-dependent macroautophagy by chaperone-mediated autophagy promotes breast cancer cell metastasis.

Scientific Reports 2017 July 7
Recent data have shown that the expression of lysosome-associated membrane protein type 2 A (LAMP2A), the key protein in the chaperone-mediated autophagy (CMA) pathway, is elevated in breast tumor tissues. However, the exact effects and mechanisms of CMA during breast cancer metastasis remain largely unknown. In this study, we found that the LAMP2A protein level was significantly elevated in human breast cancer tissues, particularly in metastatic carcinoma. The increased LAMP2A level was also positively correlated with the histologic grade of ductal breast cancer. High LAMP2A levels also predicted shorter overall survival of breast cancer patients. Downregulation of CMA activity by LAMP2A knockdown significantly inhibited the growth and metastasis of both MDA-MB-231 and MDA-MB-468 breast cancer cells in vivo and in vitro, while upregulation of CMA activity by LAMP2A overexpression had the opposite effect. Mechanistically, we found that elevated CMA activity mediated increased growth and metastasis of human breast cancer cells by downregulating the activity of autophagy-related gene 5 (ATG5)-dependent macroautophagy. Collectively, these results indicate that the anti-macroautophagic property is a key feature of CMA-mediated tumorigenesis and metastasis and may, in some contexts, serve as an attractive target for breast cancer therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app