Add like
Add dislike
Add to saved papers

In-plane anisotropy and twin boundary effects in vanadium nitride under nanoindentation.

Scientific Reports 2017 July 7
Twin boundaries (TBs) have been observed in and introduced into nonmetallic materials in recent years, which brought new concepts for the design of new structural materials. However, the roles of TB on the mechanical properties and strengthening/softening of transition metal nitrides remain unclear. To investigate the TB effects and the in-plane anisotropy, nanoindentations on VN (111) films with and without TB were simulated with molecular dynamics, in which a cylindrical indenter was used, and its longitudinal axis were assigned along <112> and <110>, respectively. We found that the effect of the indenter orientation is insignificant in the elastic stage, but significant in the following inelastic deformation. Different deformation mechanisms can be found for inelastic deformation, such as twinning and dislocation glide. The migration of TB can be observed, which may release the internal stress, resulting in softening; while the dislocation locking and pileup at TB can enhance the strength. We also found that the strengthening/softening induced by TB depends on the deformation mechanisms induced by indenter directions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app