Add like
Add dislike
Add to saved papers

Mechanistic clues to the protective effect of chrysin against doxorubicin-induced cardiomyopathy: Plausible roles of p53, MAPK and AKT pathways.

Scientific Reports 2017 July 7
Doxorubicin (DOX) is the mainstay chemotherapeutic agent against a variety of human neoplasmas. However, its clinical utility is limited by its marked cardiotoxicity. Chrysin, is a natural flavone which possesses antioxidant, anti-inflammatory and anti-cancer properties. The current study aimed to investigate the potential protective effect of chrysin against DOX-induced chronic cardiotoxicity and the underlying molecular mechanisms. Male Sprague-Dawley rats were treated with either DOX (5 mg/kg, once a week) and/or chrysin (50 mg/kg, four times a week) for four weeks. Chrysin prevented DOX-induced cardiomyopathy which was evident by conduction abnormalities, elevated serum CKMB and LDH and histopathological changes. Chrysin also ameliorated DOX-induced oxidative stress by decreasing lipid peroxidation and upregulating the antioxidant enzymes. Moreover, chrysin attenuated DOX-induced apoptosis via decreasing expression of p53, Bax, Puma, Noxa, cytochrome c and caspase-3 while increasing expression of Bcl-2. DOX induced activation of MAPK; p38 and JNK and increased expression of NF-κB. Meanwhile, DOX suppressed AKT pathway via decreasing expression of its upstream activator VEGF and increasing expression of PTEN. Conversely, chrysin effectively neutralised all these effects. Collectively, these findings indicate that chrysin effectively protected against DOX-induced cardiomyopathy via suppressing oxidative stress, p53-dependent apoptotic pathway, MAPK and NF-κB pathways while augmenting the VEGF/AKT pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app