Journal Article
Review
Add like
Add dislike
Add to saved papers

The role of OXCT1 in the pathogenesis of cancer as a rate-limiting enzyme of ketone body metabolism.

Life Sciences 2017 August 16
Cancer cells are well documented to reprogram their metabolism in order to support the maintenance and reproduction. 3-oxoacid CoA-transferase 1 (OXCT1) is a key enzyme in ketone body metabolism that catalyzes the first and rate-determining step of ketolysis. The product of OXCT1 converts to acetyl-CoA and finally fed into the tricarboxylic acid cycle for oxidation and ATP production. However, little is known of its regulation right now. Recently, some studies suggested that OXCT1 participates in tumorigenesis and signaling in cancer cells. Furthermore, our recent work showed that a marked elevation of OXCT1 expression in different categories of cancer cells. Here we review the metabolic functions of OXCT1 and its surprising roles in supporting the biological hallmarks of malignancy. We also review recent efforts in exploring the mechanism responsible for the tumor promoting effect of OXCT1 and suggest a novel therapeutic target for cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app