JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Topographical measures of functional connectivity as biomarkers for post-stroke motor recovery.

BACKGROUND: Biomarkers derived from neural activity of the brain present a vital tool for the prediction and evaluation of post-stroke motor recovery, as well as for real-time biofeedback opportunities.

METHODS: In order to encapsulate recovery-related reorganization of brain networks into such biomarkers, we have utilized the generalized measure of association (GMA) and graph analyses, which include global and local efficiency, as well as hemispheric interdensity and intradensity. These methods were applied to electroencephalogram (EEG) data recorded during a study of 30 stroke survivors (21 male, mean age 57.9 years, mean stroke duration 22.4 months) undergoing 12 weeks of intensive therapeutic intervention.

RESULTS: We observed that decreases of the intradensity of the unaffected hemisphere are correlated (r s =-0.46;p<0.05) with functional recovery, as measured by the upper-extremity portion of the Fugl-Meyer Assessment (FMUE). In addition, high initial values of local efficiency predict greater improvement in FMUE (R 2 =0.16;p<0.05). In a subset of 17 subjects possessing lesions of the cerebral cortex, reductions of global and local efficiency, as well as the intradensity of the unaffected hemisphere are found to be associated with functional improvement (r s =-0.60,-0.66,-0.75;p<0.05). Within the same subgroup, high initial values of global and local efficiency, are predictive of improved recovery (R 2 =0.24,0.25;p<0.05). All significant findings were specific to the 12.5-25 Hz band.

CONCLUSIONS: These topological measures show promise for prognosis and evaluation of therapeutic outcomes, as well as potential application to BCI-enabled biofeedback.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app