Add like
Add dislike
Add to saved papers

Database-driven screening of South African surface water and the targeted detection of pharmaceuticals using liquid chromatography - High resolution mass spectrometry.

Pharmaceuticals and personal care products are released into aquatic environments, largely as a result of ineffectual removal during wastewater treatment. Here we present a screening strategy based on the use of three commercially available mass spectral databases, combined into a single searchable entity and parallelized by cluster computing. In addition to this, a targeted solid phase extraction method with Ultra High Pressure Liquid Chromatography coupled to quadrupole time of flight mass spectrometry (UHPLC-QTOF) was used to quantify 99 pharmaceuticals in South African surface water on a national level. Limits of quantification were in the low ng/L range for the majority of the compounds and it was found that nationally both Lamotrigine and Nevirapine occurred most often. Prednisolone and Ritonavir were present at the highest average concentration; 623 and 489 ng/L respectively. It is however shown that more than 50% of the targets chosen for analysis are not detectable in any of the samples, which highlights the utility of untargeted, database driven screening; prior to the use of costly analytical standards. Untargeted screening detected 45% of the compounds detected in targeted mode, and furthermore tentatively identified a total of 4273 unique compounds across the samples. Automatically triggered MS/MS analyses yielded 92 unique hits with greater than 95% confidence. It is therefore suggested that untargeted screening should precede the targeted approach as a matter of economy and to guide the selection of targets for quantification. There is however great room for improvement in current commercial database search methodologies as a large bottleneck exists due to processing time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app