JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Nonresonant and Local Field Effects in Peptidic Nanostructures Bearing Oligo(p-phenylenevinylene) Units.

Peptide nanostructures with built-in electronic functions offer a new platform for biomaterial science. In this report, we interrogate the influences of the immediate peptide environment around oligo(p-phenylenevinylene) (OPV3) electronic units embedded within one-dimensional peptide nanostructures on the resulting photophysics as assessed by UV-vis, photoluminescence (PL), and circular dichroism spectroscopies. To do so, we studied peptide-core-peptide molecules where the core was either OPV3 or an aliphatic n-decyl chain. Coassemblies of these molecules wherein the π-core was diluted as a minority component within a majority aliphatic matrix allowed for the variation of interchromophore exciton coupling commonly found in homoassemblies of peptide-OPV3-peptide monomers. Upon coassembly of the peptides, a hydrophilic tripeptide sequence (Asp-Asp-Asp-, DDD-) promoted the dilution/isolation of the peptide-π-peptide molecules in the majority peptide-decyl-peptide matrix whereas a hydrophobic tripeptide sequence (Asp-Val-Val-, DVV-) promoted the formation of self-associated stacks within the nanostructures. We also performed temperature variation studies to induce the reorganization of π-electron units in the spatially constrained n-decyl environment. This study elucidates the nonresonant (e.g., conformational) and local peptide field effects enforced within the internal environment of peptide nanomaterials and how they lead to varied photophysical properties of the embedded π-electron cores. It offers new insights on tuning the optoelectronic properties of these types of materials on the basis of the local electronic and steric environment available within the nanostructures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app